Prediction Models for Time Discrete Competing Risks
نویسندگان
چکیده
The classical approach to the modeling of discrete time competing risks consists of fitting multinomial logit models where parameters are estimated using maximum likelihood theory. Since the effects of covariates are specific to the target events, the resulting models contain a large number of parameters, even if there are only few predictor variables. Due to the large number of parameters classical maximum likelihood estimates tend to deteriorate or do even not exist. Regularization techniques might be used to overcome these problems. This article explores the use of two different regularization techniques, namely penalized likelihood estimation methods and random forests, for modeling time discrete competing risks using both, extensive simulation studies and studies on real data. The simulation results as well as the application on three real world data sets show that the novel approaches perform very well and distinctly outperform the classical (unpenalized) maximum likelihood approach.
منابع مشابه
Comparison of Random Survival Forests for Competing Risks and Regression Models in Determining Mortality Risk Factors in Breast Cancer Patients in Mahdieh Center, Hamedan, Iran
Introduction: Breast cancer is one of the most common cancers among women worldwide. Patients with cancer may die due to disease progression or other types of events. These different event types are called competing risks. This study aimed to determine the factors affecting the survival of patients with breast cancer using three different approaches: cause-specific hazards regression, subdistri...
متن کاملBoosting for high-dimensional time-to-event data with competing risks
MOTIVATION For analyzing high-dimensional time-to-event data with competing risks, tailored modeling techniques are required that consider the event of interest and the competing events at the same time, while also dealing with censoring. For low-dimensional settings, proportional hazards models for the subdistribution hazard have been proposed, but an adaptation for high-dimensional settings i...
متن کاملDetermining factors contributing to the five-year survival of children suffering from acute lymphoblastic leukemia based on tree survival model in the presence of competing risks
Abstract Background and objectives: Leukemia is one of the most prevalent cancers worldwide. The relapse of the disease mitigates patient survival time. The convenience of explaining the results obtained from analyzing tree models have encouraged doctors and paramedics to employ them in their research. The current study is an attempt to determine the five-year survival time and factors influen...
متن کامل"Choice of prediction models for competing risks with time-dependent covariates"
We discuss prediction models for competing risks cumulative incidence in presence of internal time-dependent covariates [1], and propose a statistical procedure in order to choose the best model in terms of prediction accuracy. A common aim is to identify statistical models that accurately predict the cumulative risks for individual subjects and those covariates that provide higher predictive a...
متن کاملQuantifying the predictive accuracy of time-to-event models in the presence of competing risks.
Prognostic models for time-to-event data play a prominent role in therapy assignment, risk stratification and inter-hospital quality assurance. The assessment of their prognostic value is vital not only for responsible resource allocation, but also for their widespread acceptance. The additional presence of competing risks to the event of interest requires proper handling not only on the model ...
متن کامل